Header Ads

STATIONARY POINT, TURNING POINT AND POINT OF INLFEXION

Stationary Point, Turning Point and Point Of Inflexion



A, B and C are stationary points of the curve y=f( x ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaeyypa0JaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3ABC@ . At stationary points, the gradient of tangent is 0 or dy dx =0 MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0JaaGimaaaa@3AE4@ . A and B are turning points. These are points where the curve changes direction. C is an inflexion point. An inflexion point is a point on a curve at which the sign of the curvature changes. At inflexion point d 2 y d x 2 =0 MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG5baabaGaamizaiaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaaGimaaaa@3CCA@ but dy dx MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaaaaa@3924@ is not necessarily zero.

Turning point

At any turning point dy dx =0. Steps to determine the coordinates of the turning point of a curve:
i. Find  dy dx
ii. Let dy dx =0 and find the value of x.
iii. Find the corresponding value of y by substituting it into the equation y=f( x ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaeyypa0JaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3ABC@ .   

Example on how to find the co-ordinate of turning point of a curve.

 
(Taken from example 3.1 in Engineering Mathematics II)
  MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYb1uaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0JaaGimaaaa@3AE4@
Powered by Blogger.