Introduction
Apart from factoring method and quadratic formula, quadratic equation can be solved by using Completing the Square method.

How to solve - Solving Quadratic Equation : Solving by Completing the Square?

To solve a quadratic equation by completing the square.
1. Divide all terms with value of a.
2. Isolate the terms in x on one side of the equation.
3. Add the square of one-half the coefficient of x or ${\left(\frac{b}{2}\right)}^{2}$ to both sides of the equation.
4. Write the square root of both sides of the resulting equation and solve for x.
Example : Solve the following by using completing the square method.

$\begin{array}{l}a\right){x}^{2}-4x=-3\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left\{makesureaispositive1\text{\hspace{0.17em}}\\ {x}^{2}-4x+{\left(-\frac{4}{2}\right)}^{2}=-3+{\left(-\frac{4}{2}\right)}^{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left\{add{\left(\frac{b}{2}\right)}^{2}={\left(\frac{-4}{2}\right)}^{2}=\underset{onleftofequation}{\underbrace{{\left(-2\right)}^{2}}}=\underset{onrightofequation}{\underbrace{4}}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{x}^{2}-4x+{\left(-2\right)}^{2}=-3+4\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\left(x-2\right)}^{2}\text{}=1\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\sqrt{{\left(x-2\right)}^{2}}\text{}=±\sqrt{1}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x-2\text{}=±1\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x-2=1,\text{\hspace{0.17em}}\text{\hspace{0.17em}}x-2=-1\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\underset{¯}{\underset{¯}{x=3,\text{\hspace{0.17em}}\text{\hspace{0.17em}}x=1}}\end{array}$

$\begin{array}{l}b\right)-{x}^{2}+4x+8=0\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left\{makesureaispositive1\text{\hspace{0.17em}}\\ \frac{-{x}^{2}}{-1}+\frac{4x}{-1}+\frac{8}{-1}=\frac{0}{-1}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left\{dividealltermswith-1\text{\hspace{0.17em}}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{x}^{2}-4x-8\text{}=0\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{x}^{2}-4x\text{}=8\\ {x}^{2}-4x+{\left(\frac{-4}{2}\right)}^{2}=8+{\left(\frac{-4}{2}\right)}^{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left\{add{\left(\frac{b}{2}\right)}^{2}={\left(\frac{-4}{2}\right)}^{2}=\underset{onleftofequation}{\underbrace{{\left(-2\right)}^{2}}}=\underset{onrightofequation}{\underbrace{4}}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{x}^{2}-4x+{\left(-2\right)}^{2}\text{}=8+4\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\left(x-2\right)}^{2}\text{}=12\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\sqrt{{\left(x-2\right)}^{2}}\text{}=±\sqrt{12}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x-2\text{}=±3.46\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x-2=3.46,\text{\hspace{0.17em}}\text{\hspace{0.17em}}x-2=-3.46\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\underset{¯}{\underset{¯}{\text{\hspace{0.17em}}\text{\hspace{0.17em}}x=5.46,\text{\hspace{0.17em}}\text{\hspace{0.17em}}x=-1.46}}\end{array}$

$\begin{array}{l}c\right)\text{\hspace{0.17em}}2{x}^{2}-x-1=0\\ \text{\hspace{0.17em}}\frac{2{x}^{2}}{2}-\frac{x}{2}-\frac{1}{2}=\frac{0}{2}\\ \text{\hspace{0.17em}}{x}^{2}-\frac{1}{2}x-\frac{1}{2}=0\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}{x}^{2}-\frac{1}{2}x=\frac{1}{2}\\ {x}^{2}-\frac{1}{2}x+{\left(\frac{-\frac{1}{2}}{2}\right)}^{2}=\frac{1}{2}+{\left(\frac{-\frac{1}{2}}{2}\right)}^{2}\\ {x}^{2}-4x+{\left(-\frac{1}{4}\right)}^{2}=\frac{8}{16}+\left(\frac{1}{16}\right)\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\left(x-\frac{1}{4}\right)}^{2}=\frac{9}{16}\\ x-\frac{1}{4}=±\sqrt{\frac{9}{16}}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x-2\text{}=±3.46\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x-2=3.46,\text{\hspace{0.17em}}\text{\hspace{0.17em}}x-2=-3.46\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\underset{¯}{\underset{¯}{x=5.46,\text{\hspace{0.17em}}\text{\hspace{0.17em}}x=-1.46}}\end{array}$

$\begin{array}{l}d\right)\text{\hspace{0.17em}}2{x}^{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}3=0\\ \frac{2{x}^{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}3}{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{0}{2}\\ {x}^{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{x}{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{3}{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}0\\ {x}^{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{1}{2}x\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{3}{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}0\text{\hspace{0.17em}}\\ {x}^{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{1}{2}x\text{\hspace{0.17em}}\text{\hspace{0.17em}}+{\left(\frac{-\frac{1}{2}}{2}\right)}^{2}=\text{\hspace{0.17em}}\frac{3}{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+{\left(\frac{-\frac{1}{2}}{2}\right)}^{2}\\ {x}^{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{1}{2}x\text{\hspace{0.17em}}\text{\hspace{0.17em}}+{\left(-\frac{1}{4}\right)}^{2}=\text{\hspace{0.17em}}\frac{3}{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+{\left(-\frac{1}{4}\right)}^{2}\\ {\left(x\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{1}{4}\right)}^{2}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\frac{3}{2}+\frac{1}{16}\\ {\left(x\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{1}{4}\right)}^{2}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{25}{16}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\\ {\left(x\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{1}{4}\right)}^{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{25}{16}\\ \sqrt{{\left(x\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{1}{4}\right)}^{2}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}±\sqrt{\frac{25}{16}}\\ x\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{1}{4}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}±\frac{5}{4}\\ x\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{1}{4}\text{\hspace{0.17em}}\text{\hspace{0.17em}}±\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{5}{4}\\ x\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{6}{4}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}or\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\frac{4}{4}\\ x\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{3}{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}or\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{\hspace{0.17em}}\text{\hspace{0.17em}}-1\end{array}$
Try it yourself - Solving Quadratic Equation : Solving quadratic equation by using Completing the Square

$\begin{array}{l}a\right)4{x}^{2}-8x-5=0\\ b\right)2{x}^{2}-x-6=0\\ c\right)\text{\hspace{0.17em}}12{x}^{2}-18x=0\end{array}\right\}\begin{array}{c}ans-x=\frac{5}{2},-\frac{1}{2}\\ ans-x=2,-\frac{3}{2}\\ ans-x=0,\frac{3}{2}\end{array}$

What do you think - Students? Can you learn? Share your thoughts and experiences in the comment.